Greyhound

A RISC-V SoC with tightly coupled eFPGA on IHP SG13G2

About Me - Leo Moser

- Open Source Silicon Advocate!
- Submitted to several Open MPW shuttles
- Master's at Graz University of Technology
 - o Greyhound as master's thesis
- Work @ Efabless
 - CACE Circuit Automatic Characterization Engine
 - magic & netgen bringup for the IHP Open PDK
 - IHP OpenLane 2 support → LibreLane!
- Leo @ FOSSi Chat: https://fossi-chat.org

@leo:fossi-chat.org

June 2020: sky130 PDK released

June 2020: sky130 PDK released

Dec 2022: gf180mcu PDK released

- June 2020: sky130 PDK released
- Dec 2022: gf180mcu PDK released
- Since 2023: ihp-sg13g2 PDK released
 - IHP SG13G2 BiCMOS
 - In active development

- Open MPW tapeout program
 - Google-sponsored, Efabless-managed
 - MPW-1 to MPW-8, GFMPW-0 to GFMPW-1
 - o Initial issues, but chips worked!

Bare dies from MPW-6

- Open MPW tapeout program
 - Google-sponsored, Efabless-managed
 - MPW-1 to MPW-8, GFMPW-0 to GFMPW-1
 - o Initial issues, but chips worked!
- chipIgnite
 - \$10,000 per tapeout
 - 100 QFN @ up to 15mm²

Bare dies from MPW-6

- Open MPW tapeout program
 - Google-sponsored, Efabless-managed
 - MPW-1 to MPW-8, GFMPW-0 to GFMPW-1
 - o Initial issues, but chips worked!
- chipIgnite
 - \$10,000 per tapeout
 - 100 QFN @ up to 15mm²
- Tiny Tapeout
 - A shared silicon tapeout platform
 - Hundreds of projects on a single die

Bare dies from MPW-6

- Free MPW runs funded by BMFTR
 - 7 shuttle runs
 - IHP SG13G2 / SG13CMOS
 - Chips are on loan: IHP Open Chip Depot

- Free MPW runs funded by BMFTR
 - 7 shuttle runs
 - IHP SG13G2 / SG13CMOS
 - Chips are on loan: IHP Open Chip Depot
- ChipFoundry
 - ex-Efabless employees
 - \$14,950 per tapeout
 - o 100 QFN @ up to 15mm²

- Free MPW runs funded by BMFTR
 - 7 shuttle runs
 - IHP SG13G2 / SG13CMOS
 - Chips are on loan: IHP Open Chip Depot
- ChipFoundry
 - ex-Efabless employees
 - \$14,950 per tapeout
 - o 100 QFN @ up to 15mm²
- wafer.space
 - o GF180MCU
 - To be announced

- Revolution in education
- Students can freely access
 EDA tools, PDKs, and designs
- Chip design becomes attractive again!

R. Scholz et al., "Update on IHP open source PDK initiative" FSiC2024

Introducing Greyhound

The Key Points

- RISC-V SoC: CV32E40X
- eFPGA fabric: FABulous
 - Custom instruction extension
 - Custom peripheral
 - Standalone FPGA
- Implemented with LibreLane!
- IHP Open PDK: SG13G2 130nm BiCMOS
- Open Source:
 - https://github.com/mole99/greyhound-ihp
- Manufactured at IHP's pilot line

Top-Level Block Diagram

System on Chip

- RISC-V core: CV32E40X
 - o RV32IMAC
 - Zca_Zcb_Zcmp_Zcmt (code-size reduction)
 - Zba_Zbb_Zbc_Zbs (bit manipulation)
 - o Zicntr, Zicsr, Zihpm, Zifencei
- 8 KiB of built-in SRAM
- QSPI XIP Flash controller
 - Cache: 8 lines of 32 bytes, direct-mapped
- QSPI PSRAM controller
- Highly configurable UART
- Configure and access the eFPGA

FABulous eFPGA Fabric

FABulous tiles

- o 32 I/Os
- 784 LUT4 + FF (w. carry chain)
- 98 MUX (1×MUX8, 2×MUX4 or 4×MUX2)
- 7 SRAM (1024×32, bit-enable, single-ported)
- 7 MAC (8bit · 8bit + 20bit)
- 14 Register file (32×4, 1w2r)
- 1 Global clock network

Custom tiles

- 1 WARMBOOT (16 slots)
- 1 CPU_IRQ (4×IRQs)
- 4 CPU_IF (CPU/SoC)

Configurable Logic Block

- One CLB consists of
 - o 8 Logic Cells
 - o 1 Multiplexer

- One LC consists of
 - Carry chain
 - o LUT4
 - o D-FF
 - Shared Logic

User Designs

- Yosys & nextpnr toolchain
- + fasm python package
- RISC-V designs
 - QERV (4-bit variant)
 - FazyRV (1-bit variant)

	LC usage	
FPGA	QERV	FazyRV
Greyhound	720 (92%)	754 (96%)
iCE40 UP5K	709	634

LC usage comparison

Physical Implementation

FABulous Plugin

- Integrates into LibreLane
- Custom steps / flows
 - FABulousTile
 - FABulousFabric
- Custom configuration variables
 - FABULOUS_TILE_LIBRARY
 - FABULOUS_FABRIC_CONFIG
 - FABULOUS_TILE_SIZES

Stitching the Fabric

Implementing the Chip

- Proved to be difficult!
- Hold violations everywhere?
 - o RC-estimate vs. SPEF extraction
 - Clock tree was skewed
- Workaround: Limit core area
- Solution:
 - Bugfix in OpenROAD
 - Vertical layer resistance in clock net was not considered
 - Thanks Donn!

Implementing the Chip

- Proved to be difficult!
- Hold violations everywhere?
 - o RC-estimate vs. SPEF extraction
 - Clock tree was skewed
- Workaround: Limit core area
- Solution:
 - Bugfix in OpenROAD
 - Vertical layer resistance in clock net was not considered
 - Thanks Donn!

Verification

Verification - Will it work?

- Testbenches with cocotb!
- Simulations:
 - SoC on its own: RTL & GL 🔽
 - Fabric on its own:
 RTL
 - Chip top-level: RTL & GL* 🗸
- Abstract LVS
- Minimal DRC

^{*}only SoC, fabric is always RTL

Verification - Will it work?

- Testbenches with cocotb!
- Simulations:

SoC on its own:

RTL & GL

Fabric on its own:

RTL

Chip top-level:

RTL & GL* 🗸

Abstract LVS

Minimal DRC

corner	frequency
nom_fast_1p32V_m40C	85 MHz
nom_typ_1p20V_25C	55 MHz
nom_slow_1p08V_125C	34 MHz

STA results for the SoC

*only SoC, fabric is always RTL

Verification - Will it work?

- Testbenches with cocotb!
- Simulations:

o SoC on its own: RTL & GL

Fabric on its own:
 RTL

○ Chip top-level: RTL & GL* 🔽

- Abstract LVS
- Minimal DRC

corner	frequency
nom_fast_1p32V_m40C	85 MHz
nom_typ_1p20V_25C	55 MHz
nom_slow_1p08V_125C	34 MHz

STA results for the SoC

Fingers crossed 🤞

^{*}only SoC, fabric is always RTL

Acknowledgements

- Graz University of Technology
 - Tobias Scheipel
 - Meinhard Kissich
- FABulous Team
 - Heidelberg University
 - University of Manchester
- Open Source Team @ IHP
- Tim Edwards @ Open Circuit Design
- BMFTR: FMD-QNC (16ME083)

The Future of Greyhound

- Next revision
 - Update to LibreLane
 - Newer OpenROAD
 - Better antenna / jumper insertion
 - Use the new standard cells
- Future revision?
 - BRAM instead of SRAM
 - Better custom instructions
 - More clock domains
 - Timing annotation
- Excited about the future!

Questions?

https://github.com/mole99/greyhound-ihp